Lower bounds for the first eigenvalues of the p-Laplacian and the weighted p-Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LOWER BOUNDS FOR EIGENVALUES OF THE ONE-DIMENSIONAL p-LAPLACIAN

We also prove that the lower bound is sharp. Eigenvalue problems for quasilinear operators of p-Laplace type like (1.1) have received considerable attention in the last years (see, e.g., [1, 2, 3, 5, 8, 13]). The asymptotic behavior of eigenvalues was obtained in [6, 7]. Lyapunov inequalities have proved to be useful tools in the study of qualitative nature of solutions of ordinary linear diffe...

متن کامل

Stability of variational eigenvalues for the fractional p–Laplacian

By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.

متن کامل

ON A NONRESONANCE CONDITION BETWEEN THE FIRST AND THE SECOND EIGENVALUES FOR THE p-LAPLACIAN

We are concerned with the existence of solution for the Dirichlet problem − pu = f(x,u)+h(x) in Ω, u = 0 on ∂Ω, when f(x,u) lies in some sense between the first and the second eigenvalues of the p-Laplacian p . Extensions to more general operators which are (p−1)-homogeneous at infinity are also considered. 2000 Mathematics Subject Classification. 35J65.

متن کامل

EIGENVALUES OF THE p-LAPLACIAN AND DISCONJUGACY CRITERIA

In this work we derive oscillation and nonoscillation criteria for the one dimensional p-laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willet, and the proof is based on a Picone type identity.

متن کامل

Bounds for Laplacian Graph Eigenvalues

Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2020

ISSN: 1331-4343

DOI: 10.7153/mia-2020-23-48