Lower bounds for the first eigenvalues of the p-Laplacian and the weighted p-Laplacian
نویسندگان
چکیده
منابع مشابه
LOWER BOUNDS FOR EIGENVALUES OF THE ONE-DIMENSIONAL p-LAPLACIAN
We also prove that the lower bound is sharp. Eigenvalue problems for quasilinear operators of p-Laplace type like (1.1) have received considerable attention in the last years (see, e.g., [1, 2, 3, 5, 8, 13]). The asymptotic behavior of eigenvalues was obtained in [6, 7]. Lyapunov inequalities have proved to be useful tools in the study of qualitative nature of solutions of ordinary linear diffe...
متن کاملStability of variational eigenvalues for the fractional p–Laplacian
By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.
متن کاملON A NONRESONANCE CONDITION BETWEEN THE FIRST AND THE SECOND EIGENVALUES FOR THE p-LAPLACIAN
We are concerned with the existence of solution for the Dirichlet problem − pu = f(x,u)+h(x) in Ω, u = 0 on ∂Ω, when f(x,u) lies in some sense between the first and the second eigenvalues of the p-Laplacian p . Extensions to more general operators which are (p−1)-homogeneous at infinity are also considered. 2000 Mathematics Subject Classification. 35J65.
متن کاملEIGENVALUES OF THE p-LAPLACIAN AND DISCONJUGACY CRITERIA
In this work we derive oscillation and nonoscillation criteria for the one dimensional p-laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willet, and the proof is based on a Picone type identity.
متن کاملBounds for Laplacian Graph Eigenvalues
Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2020
ISSN: 1331-4343
DOI: 10.7153/mia-2020-23-48